Cornell University Improving Irrigation: Developing sensors to measure thirst in plants

Agriculture accounts for 70 percent of freshwater use worldwide. To feed the world’s growing population, farmers must make the most of each droplet. 

There are many precision irrigation tools available for farmers, but there are few ways to know exactly how much water individual plants need. Plants, just like people, get thirsty and need the right amount of water to thrive. 

Thirsty plants have stunted growth, lower disease resistance, and produce less fruit and grain. At the same time, overwatering can reduce the quality and even kill crops. The trick is finding a “Goldilocks Spot” where the water quantity isn’t too high or too low, but just right the right amount for each individual plant. 

Dr. Stroock and his team are developing sensors to detect the thirst of apple trees in order to more precisely irrigate orchards. Instead of using traditional techniques to estimate water needs through weather and soil conditions, researchers are asking the plant directly by gathering continuous data through sensors embedded in tree trunks.   

These sensors transmit data to a central location where researchers analyze how the plants consume water. Once the thirst mechanism in apple trees is better understood, the team will develop a tool that translates the sensor data into usable information to help farmers optimize water use. 

By reducing water use on specialty crop farms and lower the downstream impact of runoff from over irrigating, this work will also help farmers lower input costs and increase the quality and value of crops. 

 “When I visited the redwood forest in California in my youth, I was inspired by the natural feat of engineering. I wanted to understand how trees 350 feet tall could pump water from its roots up into its leaves. My research harnesses the power of nature.” 

– Abe Stroock 

Retaking The Field Volume 4 “Retaking the Field: Science Breakthroughs for Thriving Farms and a Healthier Nation” is a collaborative report from 20 FedByScience universities and the SoAR Foundation. The report highlights research projects in the five Science Breakthroughs areas identified as the most important fields to advance in agriculture by the year 2030: genomics, microbiomes, sensors, data and informatics, and transdisciplinary research. View The Issue
Retaking the Field Volume 4: Science Breakthroughs for Thriving Farms and a Healthier Nation Click to download report

More Stories from: Retaking The Field Volume 4

Supporting Soil: Improving the Way Scientists Measure and Communicate the Value of Soil

Dr. Morgan and her team are helping farmers and the public understand the importance of soil health. No-till farming, or growing crops without disturbing the soil through tillage, is a...

Read More
Defending Dairy: Connecting Expertise to Reduce Greenhouse Gas Emissions

The dairy industry is committed to reducing GHGs associated with milk production. The researchers learned that if farmers implemented best management practices worldwide to reduce GHG...

Read More
Applying Alternatives: Leveraging the Soil Microbiome to Fight Disease

Charcoal rot is a soilborne disease caused by a fungus (Macrophomina phaseolina) that results in significant crop losses. At Kansas State University, a team of researchers quantified the...

Read More