Tuskegee University Developing an Onsite Solution for Safer Food

Many food production facilities lack the equipment needed to detect pathogen contamination. Samples are mostly tested offsite while finished products are shipped for sale, before the results become available. Dr. Woubit Abdela, Dr. Temesgen Samuel, and Dr. Teshome Yehualaeshet at Tuskegee University have tinkered with a 30-year-old genetics tool to invent a fast and portable detection method.

The team started by programming a PCR (Polymerase Chain Reaction) Microplate Array to detect unique genomic regions of 12 different foodborne and food-threat pathogens. They then adjusted this technology to identify 25 common Salmonella strains from a variety of foods. This work was then adapted for onsite monitoring and detection using a hand-held lab device developed for DNA detection.

For the typical scientist, the fun is what happens in the lab. But we can’t stop there. We need to ensure new technology gets developed and disseminated.

– Dr. Temesgen Samuel

But the team did not stop at detection. They figured out how to modify gold and magnetic nanoparticles to bind with salmonella DNA or specific receptors. This system sandwiches the bacteria between the two particles to enable the removal of Salmonella from the food using a magnetic device.

The researchers have secured patents for these innovations in hopes of licensing the technologies to food producers and government agencies in order to prevent foodborne outbreaks.

Retaking The Field Volume 1 “Retaking the Field: The Case for a Surge in Agricultural Research” is a collaborative report from 13 partnering universities and the SoAR Foundation. The report provides a compelling case to policymakers and the public for increased federal agricultural research funding by celebrating the advances and exploring the untapped potential of the agriculture and food sciences. View The Issue
Retaking the Field Volume 1: The Case for a Surge in Agricultural Research Click to download report

More Stories from the community

Sequencing Solutions: Revolutionizing Understanding of Antimicrobial Resistance with Genome Analysis

Antimicrobial resistant-microbes (AMRs) pose a serious threat to public health. AMRs are found in people, animals, food, and the environment. They spread from animals to people, and from person to person. To solve this problem, Dr. Paul Morley and his team are studying the genetic makeup of all of the organisms throughout the environments involved in animal (e.g. beef and dairy cattle) food production, not just one isolated bacteria at a time.

Read More