Cornell University Thinking Tiny: Blocking Pathogenic Bacteria With Nanoengineered Surfaces

Photo credit: Cornell University

Foodborne illnesses can be caused by food coming in contact with bacteria on surfaces in food-processing plants, restaurants, and households. When enough bacteria congregate, they create a “biofilm” that glues them to the surface. Biofilms are impervious to normal cleaning detergents, making them difficult to remove from food-processing equipment.

Dr. Carmen Moraru of Cornell University, Dr. Diana-Andra Borca-Tasciuc of Rensselaer Polytechnic Institute, and their teams collaborated to develop a structural, non-chemical solution to the problem: a non-stick surface. The team covered a metallic surface with a layer of aluminum oxide, with nano-sized pores that are much smaller than bacterial cells. One nanometer is one-billionth of a meter and there are 25,400,000 nanometers in one inch.

The team discovered that nanopores of a particular size (15-25 nanometers in diameter) prevent biofilm formation. This is a relatively simple, practical, and science-based method to block attachment by diverse pathogenic bacteria to food-processing surfaces. This research provides the foundation of an innovative way to prevent foodborne illness and protect public health.

I went to school in communist Romania during the Cold War, and couldn’t really aspire to doing research. Fortunately, the communist regime fell as I finished my undergraduate studies. I received a scholarship during my PhD program in Germany. This opened up my world and resulted in my commitment to a career in research in order to deliver safe and nourishing food.

– Dr. Carmen Moraru

Retaking The Field Volume 3 “Retaking the Field: Empowering Agricultural Sciences for Health” is a collaborative report from eleven universities and the SoAR Foundation. The report — the third in SoAR’s series — explores the success of research projects funded by the Agriculture and Food Research Initiative (AFRI), the flagship competitive grants program of the USDA’s National Institute of Food and Agriculture (NIFA). It is part of SoAR’s broader education and advocacy initiative to encourage additional federal support for food and agricultural research. View The Issue
Retaking the Field Volume 3: The Case for a Surge in Agricultural Research Click to download report

More Stories from the community

Fast-tracking an Improved Wheat Harvest

Dubcovsky leads a collaboration of wheat-breeding labs throughout the U.S. whose work has made this acceleration possible. He and his colleagues have mapped out more than 90,000 genetic markers in wheat plants and linked them to increases in productivity, resistance to dangerous pathogens, and deeper root systems.

Read More
Elevating Water Management

To ensure proper moisture content for productive soils in the U.S. Corn Belt region, farmers use drainage strategies on approximately 25% of their cropland. While this is some of the most productive land in the world, it is at risk from too much or too little water in any given year. This limits crop productivity and threatens water quality. Climate change is resulting in more intense rainfall and scorching droughts, which makes water management problems worse for farmers.

Read More
Highlighting Human Health

Investments in agricultural research provide a boost to improve human health. With the sequencing of the swine (pig) genome, there are new opportunities to research with models that are extremely close to the human genome. The pig genome is of similar size, complexity, and chromosomal organization as the human genome and can be useful for human health studies.

Read More